Abstract
Introduction: Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system (CNS), marked by inflammation, demyelination, and significant oligodendrocyte injury. This disease arises from a complex interplay of genetic predispositions and environmental triggers that drive immune-mediated damage to oligodendrocytes and myelin proteins.
This research paper explores the multifaceted aspects of oligodendrocyte injury in MS, ranging from underlying pathophysiological mechanisms to potential therapeutic interventions and translational implications for clinical practice.
Oligodendrocyte damage in MS occurs via multiple mechanisms, including metabolic stress, oxidative damage, and cytokine-induced apoptosis, mainly mediated by interferon-gamma (IFN-γ) signaling. This process exacerbates neuroinflammation and contributes to disease progression. Emerging therapeutic strategies, such as targeting metabolic pathways, reducing oxidative stress, and enhancing autophagy, have demonstrated potential in preclinical studies. Furthermore, stem cell therapies are being explored for their ability to regenerate oligodendrocytes and restore myelin integrity.
Conclusions: The intricate interplay among oligodendrocyte injury, demyelination, and neuroinflammation is central to multiple sclerosis (MS) pathogenesis. Oligodendrocytes safeguard myelin in the CNS, facing challenges from immune attacks to metabolic stress. Understanding oligodendrocyte dysfunction is vital for targeted therapies that suppress immune damage and promote remyelination and CNS repair. MS's etiology,
References
Gill, S., & Agarwal, M. (2023). Multiple sclerosis part 1. Magnetic Resonance Imaging Clinics of North America. https://doi.org/10.1016/j.mric.2023.11.002
(2021). Oligodendrocyte physiology and pathology function. MDPI EBooks. https://doi.org/10.3390/books978-3-03943-690-3
Lei, Z., & Lin, W. (2024). Mechanisms governing oligodendrocyte viability in multiple sclerosis and its animal models. Cells, 13(2), 116. https://doi.org/10.3390/cells13020116
Christodoulou, M. V., Petkou, E., Atzemoglou, N., et al. (2023). Cell replacement therapy with stem cells in multiple sclerosis: A systematic review. Human Cell, 37(1), 9–53. https://doi.org/10.1007/s13577-023-01006-1
Peferoen, L. A. N., Kipp, M., Van Der Valk, P., Van Noort, J. M., & Amor, S. (2014). Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology, 141(3), 302–313. https://doi.org/10.1111/imm.12163
Qin, Q., Wang, H., Yang, K., & M. D. (2015). Interferon beta (IFN-β) treatment exerts potential neuroprotective effects through neurotrophic factors and novel neurotensin/neurotensin high-affinity receptor 1 pathway. Retrieved from http://www.cqvip.com/QK/88507X/201512/667609394.html
Hull, K., Kerridge, I., Avery, S., McCullough, M., Ritchie, D., & Szer, J. (2015). Oral chronic graft-versus-host disease in Australia: Clinical features and challenges in management. Internal Medicine Journal. https://doi.org/10.1111/imj.12812
Popescu, B. F., Pirko, I., & Lucchinetti, C. F. (2013). Pathology of multiple sclerosis: Where do we stand? Continuum (Minneap Minn), 19(4), 901–921. https://doi.org/10.1212/01.CON.0000433291.23091.65
Ghasemi, N., Razavi, S., & Nikzad, E. (2017). Multiple sclerosis: Pathogenesis, symptoms, diagnoses, and cell-based therapy. Cell Journal, 19(1), 1–10. https://doi.org/10.22074/cellj.2016.4867
López-Muguruza, E., & Matute, C. (2023). Alterations of oligodendrocyte and myelin energy metabolism in multiple sclerosis. International Journal of Molecular Sciences, 24(16), 12912. https://doi.org/10.3390/ijms241612912
Ma, X., Ma, R., Zhang, M., Qian, B., Wang, B., & Yang, W. (2023). Recent progress in multiple sclerosis treatment using immune cells as targets. Pharmaceutics, 15(3), 728. https://doi.org/10.3390/pharmaceutics15030728
Psenicka, M. W., Smith, B. C., Tinkey, R. A., & Williams, J. L. (2021). Connecting neuroinflammation and neurodegeneration in multiple sclerosis: Are oligodendrocyte precursor cells a nexus of disease? Frontiers in Cellular Neuroscience, 15, 654284. https://doi.org/10.3389/fncel.2021.654284
Lubetzki, C., & Stankoff, B. (2014). Demyelination in multiple sclerosis. In Handbook of Clinical Neurology (Print) (pp. 89–99). https://doi.org/10.1016/b978-0-444-52001-2.00004-2
Barkhane, Z., Elmadi, J., Satish Kumar, L., Pugalenthi, L. S., Ahmad, M., & Reddy, S. (2022). Multiple sclerosis and autoimmunity: A veiled relationship. Cureus, 14(4), e24294. https://doi.org/10.7759/cureus.24294
Patsopoulos, N. A. (2018). Genetics of multiple sclerosis: An overview and new directions. Cold Spring Harbor Perspectives in Medicine, 8(7), a028951. https://doi.org/10.1101/cshperspect.a028951
Lu, M., Taylor, B. V., & Körner, H. (2018). Genomic effects of the vitamin D receptor: Potentially the link between vitamin D, immune cells, and multiple sclerosis. Frontiers in Immunology, 9, 477. https://doi.org/10.3389/fimmu.2018.00477
Meier, U. C., Cipian, R. C., Karimi, A., Ramasamy, R., & Middeldorp, J. M. (2021). Cumulative roles for Epstein-Barr virus, human endogenous retroviruses, and human herpes virus-6 in driving an inflammatory cascade underlying MS pathogenesis. Frontiers in Immunology, 12, 757302. https://doi.org/10.3389/fimmu.2021.757302
Scheers, H. (2016). Epidemiological research towards a better understanding of the relationship between air pollution and human health. Retrieved from https://core.ac.uk/download/pdf/80799678.pdf
De Rosbo, N. K., & Ben-Nun, A. (1998). T-cell responses to myelin antigens in multiple sclerosis: Relevance of the predominant autoimmune reactivity to myelin oligodendrocyte glycoprotein. Journal of Autoimmunity, 11(4), 287–299. https://doi.org/10.1006/jaut.1998.0202
Rostami, A., & Ciric, B. (2013). Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination. Journal of Neurology Sciences, 333(0), 76–87. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726569/
Luo, C., Jian, C., Liao, Y., Huang, Q., Wu, Y., Liu, X., & Zou, D. (2017). The role of microglia in multiple sclerosis. Neuropsychiatric Disease and Treatment, 13, 1661–1667. https://doi.org/10.2147/ndt.s140634
Vollmer, T. L., Nair, K. V., Williams, I. M., & Alvarez, E. (2021). Multiple sclerosis phenotypes as a continuum: The role of neurologic reserve. Neurology Clinical Practice, 11(4), 342–351. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382415/
Pathak, L. (2023). Personalized treatment for multiple sclerosis: The role of precision medicine. Neurology Letters, 2(1), 30–34. https://doi.org/10.52547/nl.2.1.30
Rees, J. R., & Cross, A. H. (2007). A little stress is good: IFN-γ, demyelination, and multiple sclerosis. Journal of Clinical Investigation, 117(2), 297–299. https://doi.org/10.1172/jci31254
Enhancing AML CAR CIK therapeutic potency increasing the localization of engineered cells in the malignant niche and its selectivity by LSC-specific targeting. Retrieved from https://boa.unimib.it/handle/10281/365153
Antioxidant and astroprotective effects of a Pulicaria incisa infusion. Retrieved from https://cris.bgu.ac.il/en/publications/antioxidant-and-astroprotective-effects-of-a-pulicaria-incisa-inf
Hu, X., Herrero, C., Li, W. P., Antoniv, T. T., Falck-Pedersen, E., Koch, A. E., Woods, J. M., Haines, G. K., & Ivashkiv, L. B. (2002). Sensitization of IFN-γ Jak-STAT signaling during macrophage activation. Nature Immunology, 3(9), 859–866. https://doi.org/10.1038/ni828
Cai, Y., Liu, J., Wang, B., Sun, M., & Yang, H. (2022). Microglia in the neuroinflammatory pathogenesis of Alzheimer’s disease and related therapeutic targets. Frontiers in Immunology, 13, 856376. https://doi.org/10.3389/fimmu.2022.856376
Constantinescu, C. S., Farooqi, N., O'Brien, K., & Gran, B. (2011). Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). British Journal of Pharmacology, 164(4), 1079–1106. https://doi.org/10.1111/j.1476-5381.2011.01302.x
Tichauer, J. E., Arellano, G., Acuña, E.,et al. (2023). Interferon-gamma ameliorates experimental autoimmune encephalomyelitis by inducing homeostatic adaptation of microglia. Frontiers in Immunology, 14, 1191838. https://doi.org/10.3389/fimmu.2023.1191838
Patel, J., & Balabanov, R. (2012). Molecular mechanisms of oligodendrocyte injury in multiple sclerosis and experimental autoimmune encephalomyelitis. International Journal of Molecular Sciences, 13(8), 10647–10659. https://doi.org/10.3390/ijms130810647
Molina-González, I., Miron, V. E., & Antel, J. P. (2022). Chronic oligodendrocyte injury in central nervous system pathologies. Communications Biology, 5(1). https://doi.org/10.1038/s42003-022-04248-1
Chari, D. M. (2007). Remyelination in multiple sclerosis. International Review of Neurobiology, 79, 589–620. https://doi.org/10.1016/S0074-7742(07)79026-8
Thomas, G., Garton, A., Alexander, J., Gill, P. A., & Calabresi, P. (2022). Distinct mechanisms of oligodendrocyte injury inform therapeutic interventions in multiple sclerosis. Brain, 145(12), 4151–4153. https://doi.org/10.1093/brain/awac406
Cree, B. A. C., Arnold, D. L., Chataway, J., et al. (2021). Secondary progressive multiple sclerosis: New insights. Neurology, 97(8), 378–388. https://doi.org/10.1212/WNL.0000000000012323
Ruth, M., Stassart, A., Woodhoo, A. (2021). Axo-glial interaction in the injured PNS. Developmental Neurobiology. https://doi.org/10.1002/DNEU.22771
Wekerle, H., & Lassmann, H. (2006). The immunology of inflammatory demyelinating disease. In McAlpine's Multiple Sclerosis (pp. 491–555). https://doi.org/10.1016/B978-0-443-07271-0.50013-6
Höftberger, R., & Lassmann, H. (2017). Inflammatory demyelinating diseases of the central nervous system. Handbook of Clinical Neurology, 145, 263–283. https://doi.org/10.1016/B978-0-12-802395-2.00019-5
Franklin, R. J., & Goldman, S. A. (2015). Glia disease and repair—Remyelination. Cold Spring Harbor Perspectives in Biology, 7(7), a020594. https://doi.org/10.1101/cshperspect.a020594
Grace, S., Kim, S., Michaud, D., Hillhouse, A., Szule, J. A., Konganti, K., & Li, J. (2023). Brain region-dependent molecular signatures and myelin repair following chronic demyelination. Frontiers in Cellular Neuroscience. https://doi.org/10.3389/fncel.2023.1169786
Münzel, E. J., & Williams, A. (2013). Promoting remyelination in multiple sclerosis: Recent advances. Drugs, 73(18), 2017–2029. https://doi.org/10.1007/s40265-013-0146-8
Molina-González, I., Miron, V. E., & Antel, J. P. (2022). Chronic oligodendrocyte injury in central nervous system pathologies. Communications Biology. https://doi.org/10.1038/s42003-022-04248-1
Paul, A., Comabella, M., & Gandhi, R. (2019). Biomarkers in multiple sclerosis. Cold Spring Harbor Perspectives in Medicine, 9(3), a029058. https://doi.org/10.1101/cshperspect.a029058
Bebo, B. F., Jr., Allegretta, M., Landsman, D., et al. (2022). Pathways to cures for multiple sclerosis: A research roadmap. Multiple Sclerosis Journal, 28(3), 331–345. https://doi.org/10.1177/13524585221075990
Melchor, G. S., Khan, T., Reger, J., & Huang, J. K. (2019). Remyelination pharmacotherapy investigations highlight diverse mechanisms underlying multiple sclerosis progression. ACS Pharmacology & Translational Science, 2(6), 372–386. https://doi.org/10.1021/acsptsci.9b00068
Oligodendrocyte precursor cells as a therapeutic target for demyelinating diseases. (2019). In Progress in Brain Research (pp. 119–144). https://doi.org/10.1016/bs.pbr.2019.03.013
Oligodendrocyte precursor cells are co-opted by the immune system to cross-present antigen and mediate cytotoxicity. bioRxiv. https://www.biorxiv.org/content/10.1101/461434v1.full
Toomey, L. M. (2022). An exploration into common mechanisms of oxidative damage in models of demyelinating disease and neurotrauma. CORE. https://core.ac.uk/download/559246641.pdf
Wong, C. N., Chaddock-Heyman, L., Voss, M. W., et al. (2015). Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults. Frontiers in aging neuroscience, 7, 154. https://doi.org/10.3389/fnagi.2015.00154
Akbik, F. V., Cafferty, W. B., & Strittmatter, S. M. (2012). Myelin-associated inhibitors: A link between injury-induced and experience-dependent plasticity. Experimental Neurology, 235(1), 43–52. https://doi.org/10.1016/j.expneurol.2011.06.006
Lubetzki, C., & Stankoff, B. (2014). Demyelination in multiple sclerosis. Handbook of Clinical Neurology, 122, 89–99. https://doi.org/10.1016/B978-0-444-52001-2.00004-2
Rashidbenam, Z., Öztürk, E., Pagnin, M., Theotokis, P., Grigoriadis, N., & Petratos, S. (2023). How does Nogo receptor influence demyelination and remyelination in the context of multiple sclerosis? Frontiers in Cellular Neuroscience, 17. https://doi.org/10.3389/fncel.2023.1197492
Gharagozloo, M., Bannon, R. S., & Calabresi, P. A. (2022). Breaking the barriers to remyelination in multiple sclerosis. Current Opinion in Pharmacology, 63, 102194. https://doi.org/10.1016/j.coph.2022.102194
Melchor, G. S., Khan, T., Reger, J., & Huang, J. K. (2019). Remyelination pharmacotherapy investigations highlight diverse mechanisms underlying multiple sclerosis progression. ACS Pharmacology & Translational Science, 2(6), 372–386. https://doi.org/10.1021/acsptsci.9b00068
Abu-Rub, M., & Miller, R. H. (2018). Emerging cellular and molecular strategies for enhancing central nervous system (CNS) remyelination. Brain Sciences, 8(6), 111. https://doi.org/10.3390/brainsci8060111
Zayed, M. A., Sultan, S., Alsaab, H. O., et al. (2022). Stem-cell-based therapy: The celestial weapon against neurological disorders. Cells, 11(21), 3476. https://doi.org/10.3390/cells11213476
Romero, J. C., Berlinicke, C., Chow, S., Duan, Y., Wang, Y., Chamling, X., & Smirnova, L. (2023). Oligodendrogenesis and myelination tracing in a CRISPR/Cas9-engineered brain microphysiological system. Frontiers in Cellular Neuroscience, 16. https://doi.org/10.3389/fncel.2022.1094291
Kalafatakis, I., Papagianni, F., Theodorakis, K., & Karagogeos, D. (2023). Nogo-A and LINGO-1: Two Important Targets for Remyelination and Regeneration. International journal of molecular sciences, 24(5), 4479. https://doi.org/10.3390/ijms24054479
Hughes, A., & Appel, B. (2019). Developmental myelination is modified by microglial pruning. bioRxiv. https://doi.org/10.1101/659482
Filipi, M., & Jack, S. (2020). Interferons in the treatment of multiple sclerosis: A clinical efficacy, safety, and tolerability update. International Journal of MS Care, 22(4), 165–172. https://doi.org/10.7224/1537-2073.2018-063
Tselis, A., Khan, O., & Lisak, R. P. (2007). Glatiramer acetate in the treatment of multiple sclerosis. Neuropsychiatric Disease and Treatment, 3(2), 259–267. https://doi.org/10.2147/nedt.2007.3.2.259
Fontoura, P. (2010). Monoclonal antibody therapy in multiple sclerosis. MAbs, 2(6), 670–681. https://doi.org/10.4161/mabs.2.6.13270
Khoy, K., Mariotte, D., Defer, G., Petit, G., Toutirais, O., & Le Mauff, B. (2020). Natalizumab in multiple sclerosis treatment: From biological effects to immune monitoring. Frontiers in Immunology, 11, 549842. https://doi.org/10.3389/fimmu.2020.549842
Li, Z., Richards, S., Surks, H. K., Jacobs, A., & Panzara, M. A. (2018). Clinical pharmacology of alemtuzumab, an anti-CD52 immunomodulator, in multiple sclerosis. Clinical and Experimental Immunology, 194(3), 295–314. https://doi.org/10.1111/cei.13208
Kipp, M. (2020). Does siponimod exert direct effects in the central nervous system? Cells, 9(8), 1771. https://doi.org/10.3390/cells9081771
Bittner, S., Ruck, T., Wiendl, H., Grauer, O. M., & Meuth, S. G. (2017). Targeting B cells in relapsing-remitting multiple sclerosis: From pathophysiology to optimal clinical management. Therapeutic Advances in Neurological Disorders, 10(1), 51–66. https://doi.org/10.1177/1756285616666741
Chandran, S., Hunt, D., Joannides, A., Zhao, C., Compston, A., & Franklin, R. J. (2008). Myelin repair: The role of stem and precursor cells in multiple sclerosis. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1489), 171–183. https://doi.org/10.1098/rstb.2006.2019
Amin, M., & Hersh, C. M. (2023). Updates and advances in multiple sclerosis neurotherapeutics. Neurodegenerative Disease Management, 13(1), 47–70. https://doi.org/10.2217/nmt-2021-0058
Koch, M., Metz, L. M., Agrawal, S., & Yong, V. W. (2013). Environmental factors and their regulation of immunity in multiple sclerosis. Journal of the Neurological Sciences, 324(1–2), 10–16. https://doi.org/10.1016/j.jns.2012.10.021
Duncan, G. J., Simkins, T. J., & Emery, B. (2021). Neuron-oligodendrocyte interactions in the structure and integrity of axons. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/fcell.2021.653101
Lin, W., & Lin, Y. (2010). Interferon-γ inhibits central nervous system myelination through both STAT1-dependent and STAT1-independent pathways. Journal of Neuroscience Research, 88(12), 2569–2577. https://doi.org/10.1002/jnr.22425
Correale, J., & Farez, M. (2015). The role of astrocytes in multiple sclerosis progression. Frontiers in Neurology, 6. https://doi.org/10.3389/fneur.2015.00180
Lubetzki, C., & Stankoff, B. (2014). Demyelination in multiple sclerosis. In Handbook of Clinical Neurology (pp. 89–99). https://doi.org/10.1016/b978-0-444-52001-2.00004-2
Fernández Albarral, J. A., Ramírez Sebastián, A. I., Hoz Montañana, R. D., et al. (2019). Neuroprotective and anti-inflammatory effects of a hydrophilic saffron extract in a model of glaucoma. International Journal of Molecular Sciences, 20(17), 4110. https://doi.org/10.3390/ijms20174110
De Luca, C., Colangelo, A. M., Virtuoso, A., Alberghina, L., & Papa, M. (2020). Neurons, glia, extracellular matrix, and neurovascular unit: A systems biology approach to the complexity of synaptic plasticity in health and disease. International Journal of Molecular Sciences, 21(4), 1539. https://doi.org/10.3390/ijms21041539
Scolding, N. J., Pasquini, M., Reingold, S. C., Cohen, J. A., & International Conference on Cell-Based Therapies for Multiple Sclerosis. (2017). Cell-based therapeutic strategies for multiple sclerosis. Brain: A Journal of Neurology, 140(11), 2776–2796. https://doi.org/10.1093/brain/awx154
Correale, J., & Farez, M. F. (2015). The role of astrocytes in multiple sclerosis progression. Frontiers in Neurology, 6, 180. https://doi.org/10.3389/fneur.2015.00180
Melchor, G. S., Khan, T., Reger, J. F., & Huang, J. K. (2019). Remyelination pharmacotherapy investigations highlight diverse mechanisms underlying multiple sclerosis progression. ACS Pharmacology & Translational Science, 2(6), 372–386. https://doi.org/10.1021/acsptsci.9b00068

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.