Oligodendrocyte Injury in Multiple Sclerosis.
AJTES Vol 9, No 1, January 2025
Përgjegji M., et al. - Oligodentrocyte Injury in Multiple Sclerosis

Keywords

Multiple sclerosis
oligodendrocytes
neuroinflammation
neurodegeneration
demyelination
immune system
apoptosis
cellular metabolism

How to Cite

Përgjegji, M., Bame, K., Ceka, K., Cenalia , J., Bërdica , S., & Bushati, T. (2025). Oligodendrocyte Injury in Multiple Sclerosis. Albanian Journal of Trauma and Emergency Surgery, 9(1), 1682-1690. https://doi.org/10.32391/ajtes.v9i1.443

Abstract

Introduction: Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system (CNS), marked by inflammation, demyelination, and significant oligodendrocyte injury. This disease arises from a complex interplay of genetic predispositions and environmental triggers that drive immune-mediated damage to oligodendrocytes and myelin proteins.

This research paper explores the multifaceted aspects of oligodendrocyte injury in MS, ranging from underlying pathophysiological mechanisms to potential therapeutic interventions and translational implications for clinical practice.

Oligodendrocyte damage in MS occurs via multiple mechanisms, including metabolic stress, oxidative damage, and cytokine-induced apoptosis, mainly mediated by interferon-gamma (IFN-γ) signaling. This process exacerbates neuroinflammation and contributes to disease progression. Emerging therapeutic strategies, such as targeting metabolic pathways, reducing oxidative stress, and enhancing autophagy, have demonstrated potential in preclinical studies. Furthermore, stem cell therapies are being explored for their ability to regenerate oligodendrocytes and restore myelin integrity.

Conclusions: The intricate interplay among oligodendrocyte injury, demyelination, and neuroinflammation is central to multiple sclerosis (MS) pathogenesis. Oligodendrocytes safeguard myelin in the CNS, facing challenges from immune attacks to metabolic stress. Understanding oligodendrocyte dysfunction is vital for targeted therapies that suppress immune damage and promote remyelination and CNS repair. MS's etiology,

https://doi.org/10.32391/ajtes.v9i1.443
Përgjegji M., et al. - Oligodentrocyte Injury in Multiple Sclerosis

References

Gill, S., & Agarwal, M. (2023). Multiple sclerosis part 1. Magnetic Resonance Imaging Clinics of North America. https://doi.org/10.1016/j.mric.2023.11.002

(2021). Oligodendrocyte physiology and pathology function. MDPI EBooks. https://doi.org/10.3390/books978-3-03943-690-3

Lei, Z., & Lin, W. (2024). Mechanisms governing oligodendrocyte viability in multiple sclerosis and its animal models. Cells, 13(2), 116. https://doi.org/10.3390/cells13020116

Christodoulou, M. V., Petkou, E., Atzemoglou, N., et al. (2023). Cell replacement therapy with stem cells in multiple sclerosis: A systematic review. Human Cell, 37(1), 9–53. https://doi.org/10.1007/s13577-023-01006-1

Peferoen, L. A. N., Kipp, M., Van Der Valk, P., Van Noort, J. M., & Amor, S. (2014). Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology, 141(3), 302–313. https://doi.org/10.1111/imm.12163

Qin, Q., Wang, H., Yang, K., & M. D. (2015). Interferon beta (IFN-β) treatment exerts potential neuroprotective effects through neurotrophic factors and novel neurotensin/neurotensin high-affinity receptor 1 pathway. Retrieved from http://www.cqvip.com/QK/88507X/201512/667609394.html

Hull, K., Kerridge, I., Avery, S., McCullough, M., Ritchie, D., & Szer, J. (2015). Oral chronic graft-versus-host disease in Australia: Clinical features and challenges in management. Internal Medicine Journal. https://doi.org/10.1111/imj.12812

Popescu, B. F., Pirko, I., & Lucchinetti, C. F. (2013). Pathology of multiple sclerosis: Where do we stand? Continuum (Minneap Minn), 19(4), 901–921. https://doi.org/10.1212/01.CON.0000433291.23091.65

Ghasemi, N., Razavi, S., & Nikzad, E. (2017). Multiple sclerosis: Pathogenesis, symptoms, diagnoses, and cell-based therapy. Cell Journal, 19(1), 1–10. https://doi.org/10.22074/cellj.2016.4867

López-Muguruza, E., & Matute, C. (2023). Alterations of oligodendrocyte and myelin energy metabolism in multiple sclerosis. International Journal of Molecular Sciences, 24(16), 12912. https://doi.org/10.3390/ijms241612912

Ma, X., Ma, R., Zhang, M., Qian, B., Wang, B., & Yang, W. (2023). Recent progress in multiple sclerosis treatment using immune cells as targets. Pharmaceutics, 15(3), 728. https://doi.org/10.3390/pharmaceutics15030728

Psenicka, M. W., Smith, B. C., Tinkey, R. A., & Williams, J. L. (2021). Connecting neuroinflammation and neurodegeneration in multiple sclerosis: Are oligodendrocyte precursor cells a nexus of disease? Frontiers in Cellular Neuroscience, 15, 654284. https://doi.org/10.3389/fncel.2021.654284

Lubetzki, C., & Stankoff, B. (2014). Demyelination in multiple sclerosis. In Handbook of Clinical Neurology (Print) (pp. 89–99). https://doi.org/10.1016/b978-0-444-52001-2.00004-2

Barkhane, Z., Elmadi, J., Satish Kumar, L., Pugalenthi, L. S., Ahmad, M., & Reddy, S. (2022). Multiple sclerosis and autoimmunity: A veiled relationship. Cureus, 14(4), e24294. https://doi.org/10.7759/cureus.24294

Patsopoulos, N. A. (2018). Genetics of multiple sclerosis: An overview and new directions. Cold Spring Harbor Perspectives in Medicine, 8(7), a028951. https://doi.org/10.1101/cshperspect.a028951

Lu, M., Taylor, B. V., & Körner, H. (2018). Genomic effects of the vitamin D receptor: Potentially the link between vitamin D, immune cells, and multiple sclerosis. Frontiers in Immunology, 9, 477. https://doi.org/10.3389/fimmu.2018.00477

Meier, U. C., Cipian, R. C., Karimi, A., Ramasamy, R., & Middeldorp, J. M. (2021). Cumulative roles for Epstein-Barr virus, human endogenous retroviruses, and human herpes virus-6 in driving an inflammatory cascade underlying MS pathogenesis. Frontiers in Immunology, 12, 757302. https://doi.org/10.3389/fimmu.2021.757302

Scheers, H. (2016). Epidemiological research towards a better understanding of the relationship between air pollution and human health. Retrieved from https://core.ac.uk/download/pdf/80799678.pdf

De Rosbo, N. K., & Ben-Nun, A. (1998). T-cell responses to myelin antigens in multiple sclerosis: Relevance of the predominant autoimmune reactivity to myelin oligodendrocyte glycoprotein. Journal of Autoimmunity, 11(4), 287–299. https://doi.org/10.1006/jaut.1998.0202

Rostami, A., & Ciric, B. (2013). Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination. Journal of Neurology Sciences, 333(0), 76–87. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726569/

Luo, C., Jian, C., Liao, Y., Huang, Q., Wu, Y., Liu, X., & Zou, D. (2017). The role of microglia in multiple sclerosis. Neuropsychiatric Disease and Treatment, 13, 1661–1667. https://doi.org/10.2147/ndt.s140634

Vollmer, T. L., Nair, K. V., Williams, I. M., & Alvarez, E. (2021). Multiple sclerosis phenotypes as a continuum: The role of neurologic reserve. Neurology Clinical Practice, 11(4), 342–351. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382415/

Pathak, L. (2023). Personalized treatment for multiple sclerosis: The role of precision medicine. Neurology Letters, 2(1), 30–34. https://doi.org/10.52547/nl.2.1.30

Rees, J. R., & Cross, A. H. (2007). A little stress is good: IFN-γ, demyelination, and multiple sclerosis. Journal of Clinical Investigation, 117(2), 297–299. https://doi.org/10.1172/jci31254

Enhancing AML CAR CIK therapeutic potency increasing the localization of engineered cells in the malignant niche and its selectivity by LSC-specific targeting. Retrieved from https://boa.unimib.it/handle/10281/365153

Antioxidant and astroprotective effects of a Pulicaria incisa infusion. Retrieved from https://cris.bgu.ac.il/en/publications/antioxidant-and-astroprotective-effects-of-a-pulicaria-incisa-inf

Hu, X., Herrero, C., Li, W. P., Antoniv, T. T., Falck-Pedersen, E., Koch, A. E., Woods, J. M., Haines, G. K., & Ivashkiv, L. B. (2002). Sensitization of IFN-γ Jak-STAT signaling during macrophage activation. Nature Immunology, 3(9), 859–866. https://doi.org/10.1038/ni828

Cai, Y., Liu, J., Wang, B., Sun, M., & Yang, H. (2022). Microglia in the neuroinflammatory pathogenesis of Alzheimer’s disease and related therapeutic targets. Frontiers in Immunology, 13, 856376. https://doi.org/10.3389/fimmu.2022.856376

Constantinescu, C. S., Farooqi, N., O'Brien, K., & Gran, B. (2011). Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). British Journal of Pharmacology, 164(4), 1079–1106. https://doi.org/10.1111/j.1476-5381.2011.01302.x

Tichauer, J. E., Arellano, G., Acuña, E.,et al. (2023). Interferon-gamma ameliorates experimental autoimmune encephalomyelitis by inducing homeostatic adaptation of microglia. Frontiers in Immunology, 14, 1191838. https://doi.org/10.3389/fimmu.2023.1191838

Patel, J., & Balabanov, R. (2012). Molecular mechanisms of oligodendrocyte injury in multiple sclerosis and experimental autoimmune encephalomyelitis. International Journal of Molecular Sciences, 13(8), 10647–10659. https://doi.org/10.3390/ijms130810647

Molina-González, I., Miron, V. E., & Antel, J. P. (2022). Chronic oligodendrocyte injury in central nervous system pathologies. Communications Biology, 5(1). https://doi.org/10.1038/s42003-022-04248-1

Chari, D. M. (2007). Remyelination in multiple sclerosis. International Review of Neurobiology, 79, 589–620. https://doi.org/10.1016/S0074-7742(07)79026-8

Thomas, G., Garton, A., Alexander, J., Gill, P. A., & Calabresi, P. (2022). Distinct mechanisms of oligodendrocyte injury inform therapeutic interventions in multiple sclerosis. Brain, 145(12), 4151–4153. https://doi.org/10.1093/brain/awac406

Cree, B. A. C., Arnold, D. L., Chataway, J., et al. (2021). Secondary progressive multiple sclerosis: New insights. Neurology, 97(8), 378–388. https://doi.org/10.1212/WNL.0000000000012323

Ruth, M., Stassart, A., Woodhoo, A. (2021). Axo-glial interaction in the injured PNS. Developmental Neurobiology. https://doi.org/10.1002/DNEU.22771

Wekerle, H., & Lassmann, H. (2006). The immunology of inflammatory demyelinating disease. In McAlpine's Multiple Sclerosis (pp. 491–555). https://doi.org/10.1016/B978-0-443-07271-0.50013-6

Höftberger, R., & Lassmann, H. (2017). Inflammatory demyelinating diseases of the central nervous system. Handbook of Clinical Neurology, 145, 263–283. https://doi.org/10.1016/B978-0-12-802395-2.00019-5

Franklin, R. J., & Goldman, S. A. (2015). Glia disease and repair—Remyelination. Cold Spring Harbor Perspectives in Biology, 7(7), a020594. https://doi.org/10.1101/cshperspect.a020594

Grace, S., Kim, S., Michaud, D., Hillhouse, A., Szule, J. A., Konganti, K., & Li, J. (2023). Brain region-dependent molecular signatures and myelin repair following chronic demyelination. Frontiers in Cellular Neuroscience. https://doi.org/10.3389/fncel.2023.1169786

Münzel, E. J., & Williams, A. (2013). Promoting remyelination in multiple sclerosis: Recent advances. Drugs, 73(18), 2017–2029. https://doi.org/10.1007/s40265-013-0146-8

Molina-González, I., Miron, V. E., & Antel, J. P. (2022). Chronic oligodendrocyte injury in central nervous system pathologies. Communications Biology. https://doi.org/10.1038/s42003-022-04248-1

Paul, A., Comabella, M., & Gandhi, R. (2019). Biomarkers in multiple sclerosis. Cold Spring Harbor Perspectives in Medicine, 9(3), a029058. https://doi.org/10.1101/cshperspect.a029058

Bebo, B. F., Jr., Allegretta, M., Landsman, D., et al. (2022). Pathways to cures for multiple sclerosis: A research roadmap. Multiple Sclerosis Journal, 28(3), 331–345. https://doi.org/10.1177/13524585221075990

Melchor, G. S., Khan, T., Reger, J., & Huang, J. K. (2019). Remyelination pharmacotherapy investigations highlight diverse mechanisms underlying multiple sclerosis progression. ACS Pharmacology & Translational Science, 2(6), 372–386. https://doi.org/10.1021/acsptsci.9b00068

Oligodendrocyte precursor cells as a therapeutic target for demyelinating diseases. (2019). In Progress in Brain Research (pp. 119–144). https://doi.org/10.1016/bs.pbr.2019.03.013

Oligodendrocyte precursor cells are co-opted by the immune system to cross-present antigen and mediate cytotoxicity. bioRxiv. https://www.biorxiv.org/content/10.1101/461434v1.full

Toomey, L. M. (2022). An exploration into common mechanisms of oxidative damage in models of demyelinating disease and neurotrauma. CORE. https://core.ac.uk/download/559246641.pdf

Wong, C. N., Chaddock-Heyman, L., Voss, M. W., et al. (2015). Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults. Frontiers in aging neuroscience, 7, 154. https://doi.org/10.3389/fnagi.2015.00154

Akbik, F. V., Cafferty, W. B., & Strittmatter, S. M. (2012). Myelin-associated inhibitors: A link between injury-induced and experience-dependent plasticity. Experimental Neurology, 235(1), 43–52. https://doi.org/10.1016/j.expneurol.2011.06.006

Lubetzki, C., & Stankoff, B. (2014). Demyelination in multiple sclerosis. Handbook of Clinical Neurology, 122, 89–99. https://doi.org/10.1016/B978-0-444-52001-2.00004-2

Rashidbenam, Z., Öztürk, E., Pagnin, M., Theotokis, P., Grigoriadis, N., & Petratos, S. (2023). How does Nogo receptor influence demyelination and remyelination in the context of multiple sclerosis? Frontiers in Cellular Neuroscience, 17. https://doi.org/10.3389/fncel.2023.1197492

Gharagozloo, M., Bannon, R. S., & Calabresi, P. A. (2022). Breaking the barriers to remyelination in multiple sclerosis. Current Opinion in Pharmacology, 63, 102194. https://doi.org/10.1016/j.coph.2022.102194

Melchor, G. S., Khan, T., Reger, J., & Huang, J. K. (2019). Remyelination pharmacotherapy investigations highlight diverse mechanisms underlying multiple sclerosis progression. ACS Pharmacology & Translational Science, 2(6), 372–386. https://doi.org/10.1021/acsptsci.9b00068

Abu-Rub, M., & Miller, R. H. (2018). Emerging cellular and molecular strategies for enhancing central nervous system (CNS) remyelination. Brain Sciences, 8(6), 111. https://doi.org/10.3390/brainsci8060111

Zayed, M. A., Sultan, S., Alsaab, H. O., et al. (2022). Stem-cell-based therapy: The celestial weapon against neurological disorders. Cells, 11(21), 3476. https://doi.org/10.3390/cells11213476

Romero, J. C., Berlinicke, C., Chow, S., Duan, Y., Wang, Y., Chamling, X., & Smirnova, L. (2023). Oligodendrogenesis and myelination tracing in a CRISPR/Cas9-engineered brain microphysiological system. Frontiers in Cellular Neuroscience, 16. https://doi.org/10.3389/fncel.2022.1094291

Kalafatakis, I., Papagianni, F., Theodorakis, K., & Karagogeos, D. (2023). Nogo-A and LINGO-1: Two Important Targets for Remyelination and Regeneration. International journal of molecular sciences, 24(5), 4479. https://doi.org/10.3390/ijms24054479

Hughes, A., & Appel, B. (2019). Developmental myelination is modified by microglial pruning. bioRxiv. https://doi.org/10.1101/659482

Filipi, M., & Jack, S. (2020). Interferons in the treatment of multiple sclerosis: A clinical efficacy, safety, and tolerability update. International Journal of MS Care, 22(4), 165–172. https://doi.org/10.7224/1537-2073.2018-063

Tselis, A., Khan, O., & Lisak, R. P. (2007). Glatiramer acetate in the treatment of multiple sclerosis. Neuropsychiatric Disease and Treatment, 3(2), 259–267. https://doi.org/10.2147/nedt.2007.3.2.259

Fontoura, P. (2010). Monoclonal antibody therapy in multiple sclerosis. MAbs, 2(6), 670–681. https://doi.org/10.4161/mabs.2.6.13270

Khoy, K., Mariotte, D., Defer, G., Petit, G., Toutirais, O., & Le Mauff, B. (2020). Natalizumab in multiple sclerosis treatment: From biological effects to immune monitoring. Frontiers in Immunology, 11, 549842. https://doi.org/10.3389/fimmu.2020.549842

Li, Z., Richards, S., Surks, H. K., Jacobs, A., & Panzara, M. A. (2018). Clinical pharmacology of alemtuzumab, an anti-CD52 immunomodulator, in multiple sclerosis. Clinical and Experimental Immunology, 194(3), 295–314. https://doi.org/10.1111/cei.13208

Kipp, M. (2020). Does siponimod exert direct effects in the central nervous system? Cells, 9(8), 1771. https://doi.org/10.3390/cells9081771

Bittner, S., Ruck, T., Wiendl, H., Grauer, O. M., & Meuth, S. G. (2017). Targeting B cells in relapsing-remitting multiple sclerosis: From pathophysiology to optimal clinical management. Therapeutic Advances in Neurological Disorders, 10(1), 51–66. https://doi.org/10.1177/1756285616666741

Chandran, S., Hunt, D., Joannides, A., Zhao, C., Compston, A., & Franklin, R. J. (2008). Myelin repair: The role of stem and precursor cells in multiple sclerosis. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1489), 171–183. https://doi.org/10.1098/rstb.2006.2019

Amin, M., & Hersh, C. M. (2023). Updates and advances in multiple sclerosis neurotherapeutics. Neurodegenerative Disease Management, 13(1), 47–70. https://doi.org/10.2217/nmt-2021-0058

Koch, M., Metz, L. M., Agrawal, S., & Yong, V. W. (2013). Environmental factors and their regulation of immunity in multiple sclerosis. Journal of the Neurological Sciences, 324(1–2), 10–16. https://doi.org/10.1016/j.jns.2012.10.021

Duncan, G. J., Simkins, T. J., & Emery, B. (2021). Neuron-oligodendrocyte interactions in the structure and integrity of axons. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/fcell.2021.653101

Lin, W., & Lin, Y. (2010). Interferon-γ inhibits central nervous system myelination through both STAT1-dependent and STAT1-independent pathways. Journal of Neuroscience Research, 88(12), 2569–2577. https://doi.org/10.1002/jnr.22425

Correale, J., & Farez, M. (2015). The role of astrocytes in multiple sclerosis progression. Frontiers in Neurology, 6. https://doi.org/10.3389/fneur.2015.00180

Lubetzki, C., & Stankoff, B. (2014). Demyelination in multiple sclerosis. In Handbook of Clinical Neurology (pp. 89–99). https://doi.org/10.1016/b978-0-444-52001-2.00004-2

Fernández Albarral, J. A., Ramírez Sebastián, A. I., Hoz Montañana, R. D., et al. (2019). Neuroprotective and anti-inflammatory effects of a hydrophilic saffron extract in a model of glaucoma. International Journal of Molecular Sciences, 20(17), 4110. https://doi.org/10.3390/ijms20174110

De Luca, C., Colangelo, A. M., Virtuoso, A., Alberghina, L., & Papa, M. (2020). Neurons, glia, extracellular matrix, and neurovascular unit: A systems biology approach to the complexity of synaptic plasticity in health and disease. International Journal of Molecular Sciences, 21(4), 1539. https://doi.org/10.3390/ijms21041539

Scolding, N. J., Pasquini, M., Reingold, S. C., Cohen, J. A., & International Conference on Cell-Based Therapies for Multiple Sclerosis. (2017). Cell-based therapeutic strategies for multiple sclerosis. Brain: A Journal of Neurology, 140(11), 2776–2796. https://doi.org/10.1093/brain/awx154

Correale, J., & Farez, M. F. (2015). The role of astrocytes in multiple sclerosis progression. Frontiers in Neurology, 6, 180. https://doi.org/10.3389/fneur.2015.00180

Melchor, G. S., Khan, T., Reger, J. F., & Huang, J. K. (2019). Remyelination pharmacotherapy investigations highlight diverse mechanisms underlying multiple sclerosis progression. ACS Pharmacology & Translational Science, 2(6), 372–386. https://doi.org/10.1021/acsptsci.9b00068

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.