Perioperative Management for Surgical Repair of Ebstein’s Anomaly

Marsela Goga*, Saimir Kuci, Alfred Ibrahimini, Ervin Bejko, Stavri Llazo, Ermal Likaj, Jacob Zeitani

Received: 05 June 2021 / Accepted: 29 June 2021 / Published online: 20 July 2021

Abstract

Background: Ebstein’s anomaly is a rare and complex heart defect that affects the tricuspid valve and is accountable for around 1% of congenital cardiac abnormalities. It is one of the most common congenital causes of tricuspid valve regurgitation. Ebstein’s anomaly often is diagnosed prenatally, due to its severe cardiomegaly. Some individuals with this anomaly do not experience complications until adulthood and even then, they have mostly minor complaints like exercise intolerance. An atrial septal defect is most commonly (70-90%) associated with Ebstein’s anomaly. However, ventricular septal defect (VSD) can be associated with 2-6% of the cases.

Case presentation: This report presents a case of surgical intervention for a 38-year-old female with Ebstein’s anomaly symptomatic with moderate-to-severe pulmonary regurgitation and foramen ovale apertum.

Conclusions: Ebstein anomaly is a complicated form of congenital heart disease with variable clinical presentations. The anesthetic plan must also focus on maintenance of RV function and avoidance of increase in PVR. Reversible causes of increased PVR, such as acidemia, hypoxemia, and hypercarbia must be avoided. Agents that lower PVR, such as nitrates, and nitric oxide may be beneficial in patients with severe pulmonary hypertension. With a sound knowledge of the cardiac anatomy, accurate scheming of surgical outcomes, routine follow-ups, multidisciplinary team approach, and better management, an experienced center can ultimately improve the prognosis of such patients.

Keywords: Ebstein’s anomaly (EA), tricuspid valve (TV), arrhythmias

Introduction

Ebstein’s anomaly is a disorder that primarily involves the tricuspid valve (TV). The anomaly is named after Wilhelm Ebstein, who in 1866 first described the defect’s symptoms on the heart of 19-year-old Joseph Prescher [1]. The EA produces several anatomical variations and is characterized by:

- Embryonic failure of delamination of the septal inferior and anterior leaflets of the TV, resulting in adherence of the leaflets to the underlying right ventricular (RV) myocardium
- Apical displacement of the tricuspid leaflets’ annular hinge points (septal > inferior > anterior) with an antero-apical shift in the functional TV orifice toward the RV outflow tract
- Dilatation of the arterialized portion of the RV along with anterior leaflet fenestrations, redundancy or tethering and muscularization
- Dilatation of the anatomic TV annulus, thus typically results in severe regurgitation.

Ebstein anomaly’s most common symptoms are cyanosis, dyspnea, decreased exercise tolerance, tachycardia, chest pain, and syncope. Arrhythmias are common as well and include accessory conduction pathways...
(Wolff–Parkinson–White syndrome) in about 15–20% of the defected ones and around 30–40% of those affected patients will develop atrial tachyarrhythmias by age 50. Other commonly associated cardiac defects include atrial septal defect or patent foramen ovale (70–90%), ventricular septal defect (2–6%), and RV outflow tract obstruction that can occur as a secondary to structural abnormalities (pulmonary valve stenosis or pulmonary atresia), branch pulmonary artery stenosis or patent ductus arteriosus. In cases where preexcitation is present (Wolff–Parkinson–White syndrome), preoperative electrophysiologic study and ablation usually are recommended at age of 4 to 5 years and typically followed by surgical repair of the anomaly.

Surgery includes symptoms like fatigue, decreased exercise tolerance, cyanosis and shortness of breath or progressive RV enlargement, RV dysfunction, or the onset of atrial tachyarrhythmias. Operative management routinely consists of TV repair or replacement, selective plication of the aRV, right reduction atroplasty, closure (or subtotal closure) of any atrial septal communications, and correction of other associated anomalies.

Case Report

Patient S.O. 38 years old, mother of 2 children with body weight 45 kg and BMI 18.75 kg/m² was presented to the hospital with complaints such as vertigo, episodes of lipotony and difficulty breathing in efforts, symptoms which have been intensifying especially in the last two years, IKK NYHA 3. Patient without concomitant disease, without chronic drug therapy with laboratory examinations within the normal range. An ECG shows incomplete RBB, sinus rhythm without repolarization disorders. Has performed echocardiography where it results: Arterialization of the right ventricle in the field of Ebstein Anomaly. RA with surface 45 cm², RV small with volume 38 ml. The leaves of the tricuspid valve are thick, myxomatous and with no coaptation. Moderate tricuspid regurgitation. Tricuspid ring about 52-54 mm. Stored RV function. TAPSE about 16 mm. PsAP 35 mmHg. Aneurismatic IAS probable foramen ovale apertum. (Fig.1, 2) This case was discussed in the heart team meeting, and we decided to perform an elective surgery for correcting the abnormalities presented.

Perioperative management

The patient was prepared for standard open-heart surgery. All emergency equipment and drugs were made available, including the DC shock machine, although we did not use it, and antiarrhythmic drugs (amiodarone and adenosine). On arrival in the operation room, the patient was in semi reclining position with cyanosis. Initial hemodynamic statuses were blood pressure 110/70 mmHg, heart rate 75 beats/min, pulse oximetry 90%.

Routine monitors were applied (ECG, SpO₂, a right radial arterial line was also inserted for sampling and monitoring arterial blood pressure). Following preoxygenation with a face mask, induction was carried out using propofol 100 mg, midazolam (3 mg), fentanyl (100 µg), and pancuronium (4 mg). Endotracheal intubation and mechanical ventilation were commenced. Central venous access was gained through the right internal jugular veins. Anesthesia was maintained with propofol fentanyl and sevoflurane.

Cardiopulmonary bypass was established by standard aortic bicaval cannulation. Before instituting cardiopulmonary bypass (CPB), total body heparinization was achieved using 300 U/kg of heparin. The CPB technique included the use of a membrane oxygenator. CPB flow was maintained at 2.2–2.4 l/min/m², keeping the mean blood pressure at 50–60 mmHg in temperature 35°C. Myocardial protection was initiated using antegrade blood cardioplegia. The total cross-clamp time was 42 min and bypass time was 65 min.

Opening of the right atrium native tricuspid valve revealed severe distortion (Fig 3). FOA was found and closed. Arterialized RV was plicated. The tricuspid valve was replaced with 33 mm biologic SJM Heart Valve (Fig.4). RA tomy wound was closed.
Postoperative echocardiography showed a very minimal residual tricuspid regurgite with a well-functioning right ventricle. The systolic pulmonary artery pressure dropped to normal range.

Discussion

TR imposes volume overload of both RA and RV leading to dilatation of RA and functional impairment of small RV. The functional impairment of RV is also determined by ratio of the combined area of RA and atrialized RV relative to area of functional RV, as the atrialized RV either behaves passively during the cardiac cycle or, as an aneurysm that expands paradoxically during systole. [1, 2] The presence of an ASD would be helpful in patients with EA, as it would vent the blood to the left side of heart. Thus maintaining the cardiac output but at the expense of increase in cyanosis. With coexisting MS, ASD may not help in maintaining cardiac output. Pulmonary artery pressure is often normal in EA [3].

Coexisting critical MS can modify the natural history of EA by increasing left atrial (LA) pressure that may lead either to bidirectional shunt or, left to right shunt across ASD aggravating RA volume overload. Combination of Ebstein’s with MS results in early onset of complications such as development of atrial fibrillation and heart failure. Elevated LA pressure is also transmitted to pulmonary venous system, which lead to early onset of pulmonary arterial hypertension (PAH). PAH causes worsening of TR and early RV failure. Depending on size of ASD (if small) pulmonary edema may develop [4].

Tachyarrhythmic sudden death is a threat regardless of severity of EA [5]. SVT are most common arrhythmia. Although ventricular arrhythmias are uncommon, stimulation of arrhythmogenic atrialized RV may initiate polymorphic ventricular tachycardia or, fibrillation. Therefore, one should avoid stimulation of heart during insertion of central venous catheter. In combination of Ebstein’s with MS, atrial flutter or fibrillation with accelerated conduction via ACP may induce fast ventricular rate leading to precipitous increase in pulmonary venous pressure. Therefore, tachyarrhythmia should be treated aggressively and ventricular rate should be controlled between 70 to 90 per minute [6].

Preoperative electrophysiological evaluation is often warranted to locate ACP and possible RFA to avoid recurrent arrhythmia and instability in the perioperative period. RFA prior to surgery is therefore recommended [7]. However, in our case ACP could not be ablated because of poor signal.

Surgical division of ACP may be considered as an option for selected patients [8]. This was not done in our patient because of parahisian location of ACP and fact that surgical repair of EA itself, may reduce the incidence of arrhythmias postoperatively [9]. We preferred to do Danielson repair of TV and MVR. Danielson repair consists of reconstruction of enlarged anterior leaflet into a competent monocusp valve, transverse plication of atrialized RV, excision of redundant atrial free wall and closer of the associated ASD [10].
Mortality after cardiac surgery for Ebstein’s anomaly ranges from 2.5% to 31%. Independent predictors for mortality and morbidity remain poorly defined because of the low incidence of this congenital anomaly. To identify potentially modifiable factors, this retrospective study investigates the prognostic value of perioperative variables for mortality and morbidity.

Conclusion

Ebstein anomaly is a complicated form of congenital heart disease with variable clinical presentations. The anaesthetic plan must also focus on maintenance of RV function and avoidance of increase in PVR. Reversible causes of increased PVR, such as acidemia, hypoxemia, and hypercarbia must be avoided. Agents that lower PVR, such as nitrates, and nitric oxide may be beneficial in patients with severe pulmonary hypertension.

With a sound knowledge of the cardiac anatomy, accurate scheming of surgical outcomes, routine follow ups, multidisciplinary team approach and better management, an experienced center can ultimately improve the prognosis of such patients.

COI Statement: This paper has not been submitted in parallel. It has not been presented fully or partially at a meeting or podium or congress. It has not been published nor submitted for consideration beforehand.

This research received no specific grant from any funding agency in the public, commercial, or non-profit sectors. There are no relevant or minor financial relationships from authors, their relatives or next of kin with external companies.

Disclosure: The authors declared no conflict of interest. No funding was received for this study.

Acknowledgement: We would like to thank medical staff of Department of Anaesthesiology and Reanimation, German Hospital Tirana, ALBANIA.

References