Bedside Ultrasonographic Assessment of the Optic Nerve Sheath Diameter to Assess Intracranial Pressure in Patients Given Ketamine in Emergency Department
AJTES Vol 7, No 2, July 2023
Akça E et al. Bedside Ultrasonographic Assessment of the Optic Nerve Sheath Diameter to Assess IP in Patients Given Ketamine in ED

Keywords

Intracranial pressure
ketamine
sedation
ultrasound
optic nerve

How to Cite

Akça, E., Yılmaz, F., Baltacıoğlu, B., Tiftikçi, İffet, Arslan, E., Kavalcı, C., & Beydilli, İnan. (2023). Bedside Ultrasonographic Assessment of the Optic Nerve Sheath Diameter to Assess Intracranial Pressure in Patients Given Ketamine in Emergency Department. Albanian Journal of Trauma and Emergency Surgery, 7(2), 1273-1278. https://doi.org/10.32391/ajtes.v7i2.333

Abstract

Background: There is an ongoing debate if ketamine exerts any effect on intracranial pressure (ICP). ICP can be evaluated noninvasively by means of optic nerve sheath diameter (ONSD) measurement. In the present study, we aimed to determine if ketamine has any perceivable effect on ICP using ONSD.

Material and Methods: In this single-center observational study, we prospectively enrolled patients who were admitted to the ED and received intravenous ketamine for induction, analgesia, procedural sedation for any procedure (ie, fracture reduction, laceration repair, pacemaker implantation). ONSD was used to rate ICP changes noninvasively both before and after ketamine application.

Results: There were a total of 75 patients with a mean age of 59.8 ± 20.5 years. The majority of patients were applied Procedural Sedation (53.3%). In patients who were administered ketamine for induction, the median ONSD before and after ketamine were 5.10 (IQR: 1) mm and 5.00 (IQR: 1.30) mm, respectively. There occurred no significant diameter change (p=0.832). In patients who were administered ketamine for analgesia, the median ONSD 3.70 (IQR: 0.40) mm and 3.65 (IQR: 0.23) mm prior to and after the procedure, respectively. There occurred no significant diameter change (p=0.549). In patients who were administered ketamine for procedural sedation, the median ONSD before and after the procedure were 4.05 (IQR:0.67) mm and 3.97 (IQR: 0.69) mm, respectively. This time, however, ONSD was significantly reduced after ketamine administration (p=0.001).

Conclusions: In this patient population, ketamine did not cause any incremental effect on ONSD, a surrogate marker of ICP.

https://doi.org/10.32391/ajtes.v7i2.333
Akça E et al. Bedside Ultrasonographic Assessment of the Optic Nerve Sheath Diameter to Assess IP in Patients Given Ketamine in ED

References

Green SM, Roback MG, Kennedy RM, Krauss B. Clinical practice guideline for emergency department ketamine dissociative sedation: 2011 update. Ann Emerg Med 2011;57(5):449-461. doi: 10.1016/j.annemergmed.2010.11.030

Zanos P, Moaddel R, Morris PJ, et al. Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacol Rev 2018;70(3):621-660. doi: 10.1124/pr.117.015198

Kochanek PM, Tasker RC, Carney N, et al. Guidelines for the Management of Pediatric Severe Traumatic Brain Injury, Third Edition: Update of the Brain Trauma Foundation Guidelines [published correction appears in Pediatr Crit Care Med 2019;20(4):404]. Pediatr Crit Care Med 2019;20(3S Suppl 1): S1-S82. doi: 10.1097/PCC.0000000000001735

Stem CT, Ramgopal S, Hickey RW, Manole MD, Balzer JR. Effect of ketamine on transcranial Doppler Gosling pulsatility index in children undergoing procedural sedation: A pilot study. J Am Coll Emerg Physicians Open 2022;3(4): e12760. doi: 10.1002/emp2.12760

Green SM, Andolfatto G, Krauss BS. Ketamine and intracranial pressure: no contraindication except hydrocephalus. Ann Emerg Med 2015;65(1):52-54. doi: 10.1016/j.annemergmed.2014.08.025

Frumin E, Schlang J, Wiechmann W, et al. Prospective analysis of single operator sonographic optic nerve sheath diameter measurement for diagnosis of elevated intracranial pressure. West J Emerg Med 2014;15(2):217-220. doi: 10.5811/westjem.2013.9.16191

Wang L, Feng L, Yao Y, et al. Optimal optic nerve sheath diameter threshold for the identification of elevated opening pressure on lumbar puncture in a Chinese population. PLoS One 2015;10(2):e0117939. doi: 10.1371/journal.pone.0117939

Kristiansson H, Nissborg E, Bartek JJ, Andresen M, Reinstrup P, Romner B. Measuring elevated intracranial pressure through noninvasive methods: a review of the literature. J Neurosurg Anesthesiol 2013;25(4):372–385

Komut E, Kozacı N, Sönmez BM, et al. Bedside sonographic measurement of optic nerve sheath diameter as a predictor of intracranial pressure in ED. Am J Emerg Med 2016;34(6):963-967. doi: 10.1016/j.ajem.2016.02.012

Hacıalioğulları F, Yılmaz F, Yılmaz A, et al. Role of Point-of-Care Lung and Inferior Vena Cava Ultrasound in Clinical Decisions for Patients Presenting to the Emergency Department With Symptoms of Acute Decompensated Heart Failure. J Ultrasound Med 2021;40(4):751-761. doi: 10.1002/jum.15447

Stengel D, Rademacher G, Ekkernkamp A, Güthoff C, Mutze S. Emergency ultrasound-based algorithms for diagnosing blunt abdominal trauma. Cochrane Database Syst Rev 2015 14;2015(9):CD004446. doi: 10.1002/14651858.CD004446.pub4

Demir TA, Yılmaz F, Sönmez BM, Karadaş MA, Okudan RN, Keskin O. Association of optic nerve sheath diameter measurement with hyponatremia in emergency department. Am J Emerg Med 2019;37(10):1876-1879. doi: 10.1016/j.ajem.2018.12.054

Luberda M, Stachura K, Moskała M. Badanie ultrasonograficzne nerwów wzrokowych jako metoda nieinwazyjnej oceny ciśnienia śródczaszkowego [Optic nerve sonography - the non-invasive evaluation of intracranial pressure]. Przegl Lek 2013;70(11):983-985

Raghunandan N, Joseph M, Nithyanandam S, Karat S. Role of ultrasonographic optic nerve sheath diameter in the diagnosis and follow-up of papilledema and its correlation with Frisén's severity grading. Indian J Ophthalmol 2019;67(8):1310-1313. doi: 10.4103/ijo.IJO_1827_18

Richards E, Munakomi S, Mathew D. Optic Nerve Sheath Ultrasound. [Updated 2022 Aug 9]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554479/

Bar-Joseph G, Guilburd Y, Tamir A, Guilburd JN. Effectiveness of ketamine in decreasing intracranial pressure in children with intracranial hypertension. J Neurosurg Pediatr 2009;4(1):40-46. doi:10.3171/2009.1.PEDS08319

Rueda Carrillo L, Garcia KA, Yalcin N, Shah M. Ketamine and Its Emergence in the Field of Neurology. Cureus 2022;14(7): e27389. doi: 10.7759/cureus.27389

Shaprio HM, Wyte SR, Harris AB. Ketamine anaesthesia in patients with intracranial pathology. Br J Anaesth 1972;44(11):1200-1204. doi: 10.1093/bja/44.11.1200

Zeiler FA, Teitelbaum J, West M, Gillman LM. The ketamine effect on ICP in traumatic brain injury. Neurocrit Care 2014;21(1):163-173. doi: 10.1007/s12028-013-9950-y

Gregers MCT, Mikkelsen S, Lindvig KP, Brøchner AC. Ketamine as an Anesthetic for Patients with Acute Brain Injury: A Systematic Review. Neurocrit Care 2020;33(1):273-282. doi: 10.1007/s12028-020-00975-7

Opdenakker O, Vanstraelen A, De Sloovere V, Meyfroidt G. Sedatives in neurocritical care: an update on pharmacological agents and modes of sedation. Curr Opin Crit Care 2019;25(2):97-104. doi:10.1097/MCC.0000000000000592

Godoy DA, Badenes R, Pelosi P, Robba C. Ketamine in acute phase of severe traumatic brain injury "an old drug for new uses?". Crit Care 2021;25(1):19. doi:10.1186/s13054-020-03452-x

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.