Modern Approaches for Treatment of Patients with Chronic Wounds in Ambulatory Setting in General Hospital Dr. "Jože Potrč", Ptuj.
AJTES Vol 3, No 1, July 2019
Full Text PDF

Keywords

chronic wounds
wound healing unit
modern approaches
individual approach

How to Cite

Veliu, S., Kröpfl, J., & Vrbnjak, D. (2019). Modern Approaches for Treatment of Patients with Chronic Wounds in Ambulatory Setting in General Hospital Dr. "Jože Potrč", Ptuj. Albanian Journal of Trauma and Emergency Surgery, 3(1), 305-314. https://doi.org/10.32391/ajtes.v3i1.35

Abstract

Chronic wounds represent an enormous health, social and economic burden in modern society. With the increasing incidence of diabetes and obesity as well as the ageing of the population, we correspondingly expect a rise in the incidence of chronic wounds. The latter will reflect in an even heavier burden for individuals, their families and the society. At the General Hospital Dr. Jože Potrč Ptuj we devote a lot of time dealing with this issue, because we are aware of the impact that the chronic wounds have on the quality of life of affected patients. We have been taking care of patients with chronic wounds for several years in the ambulatory and hospital setting. In the article we present our organizational model in the treatment of patients with chronic wounds at General Hospital Dr. Jože Potrč Ptuj. We present the modern approaches in the treatment of chronic wounds at our hospital, our results in the treatment of chronic wounds supported with clinical cases. The key to successful management of patients with chronic wounds are good knowledge, team work and an individual approach to each patient.

https://doi.org/10.32391/ajtes.v3i1.35
Full Text PDF

References

Enoch S, Harding K. Exudate levels in chronic wounds. Wounds. 2003;15(7):213.

Serena TE. Use of epidermal grafts in wounds: a review of an automated epidermal harvesting system. Journal of Wound Care. 2015;24(4 Suppl):30-4.

Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, et al. Human Skin Wounds: A major and snowballing threat to public health and the economy. Wound Repair and Regeneration. 2009; 17(6):763-71.

Posnett J, Gottrup F, Lundgren H, Saal G. The resource impact of wounds on health-care providers in Europe. Journal of Wound Care. 2009;18(4):154-61.

Veliu S, Vrbnjak D, Kröpfl J. Izkušnje z uporabo svetlobne terapije pri zdravljenju kroničnih ran. In: Smrke D, Nikolič J. eds. Rana - včeraj, danes, jutri? Simpozij o ranah: zbornik predavanj, 2017, april 19–21, Portorož, Slovenija. Ljubljana: Klinični oddelek za kirurške okužbe, Kirurška klinika, Univerzitetni klinični center. 2017;65-67.

Ousey K, Rogers AA, Rippon MG. Hydro-responsive wound dressings simplify TIME wound management framework. British Journal of Community Nursing. 2016;21(l12 Suppl):39-9.

Leaper DJ, Schultz G, Carville K, Fletcher J, Swanson T, Drake R. Extending the TIME concept: what have we learned in the past 10 years? International Wound Journal. 2012;9(2):1-19.

Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, et al. Epithelialization in wound healing: a comprehensive review. Advances in Wound Care (New Rochelle). 2014;3(7): 445-64.

Meloni M, Izzo V, Vainieri E, Giurato L, Ruotolo V, Uccioli L. Management of negative pressure wound therapy in the treatment of diabetic foot ulcers. World Journal of Orthopedics. 2015; 6(4):387-93.

Orgill DP, Bayer LR. Negative pressure wound therapy: past, present and future. International Wound Journal. 2013;10 (Suppl 1):15-9.

Birke-Sorensen H, Malmsjo M, Rome P, Hudson D, Krug E, Berg L, et al. Evidence-based recommendations for negative pressure wound therapy: treatment variables (pressure levels, wound filler and contact layer)--steps towards an international consensus. Journal of Plastic, Reconstructive & Aesthetic Surgery. 2011;64 Suppl:1-16.

European Wound Managemet Association. 2007. Topical negative pressure in wound management. Position Document. Available at: http://www.woundsinternational.com/media/issues/84/files/content_46.pdf

Laginja S, Marinović M. Primjena terapije negativnim tlakom. Acta Medica Croatica. 2016;70 (Supl 1):97-100.

Bowens A. Evidence based review: Bioptron light therapy. Available at: http://www.sensolite.com/evidenciapdf/30.pdf

Hawkins D, Abrahamse H. 2007. Phototherapy - a treatment modality for wound healing and pain relief. African Journal of Biomedical Research. 2007;1:99-109.

El-Deen HB, Fahmy S, Ali SA, El-Sayed WM. 2014. Polarized light versus light-emitting diode on healing of chronic diabetic foot ulcer. Romanian Journal of Biophysics.2014;24(2):1-15.

Iordanou P, Baltopoulos G, Giannakopoulou M, Bellou P, Ktenas E. 2002. Effect of polarized light in the healing process of pressure ulcers. International Journal of Nursing Practice. 2002;8(1): 49-55.

Đurović A, Marić D, Brdareski Z, Jevtić M, Đurđević S. The effects of polarized light therapy in pressure ulcer healing. Vojnosanitetski pregled. 2008;65(12):906-12.

Colić MM, Vidojković N, Jovanović M, Lazović G. The use of polarized light in aesthetic surgery. Aesthtic Plastic Surgergy. 2004;28:324-27.

Stasinopoulos D, Stasinopoulos I, Johnson MI. Treatment of carpal tunnel syndrome with polarized polychromatic noncoherent light (Bioptron light): A preliminary, prospective, open clinical trial. Photomededicine and Laser Surgery. 2005;23(2):225-8.

Veliu S, Kröpfl J, Vrbnjak D. Vpliv polarizirane, polikromatske svetlobe na celjenje ran. In: Frangež I, Nikolič J (eds). Kirurški in/ali konzercativni pristop k zdravljenju kronične rane?, 13. simpozij o ranah z mednarodno udeležbo, 19. do 20. april 2018 Portorož, Slovenija. Ljubljana: Klinični oddelek za kirurške okužbe, Kirurška klinika, Univerzitetni klinični center. 2018: 114-118.

Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Annals of Biomedical Engineering. 2012; 40(2):516-33.

Saltmarche AE. Low level laser therapy for healing acute and chronic wounds—the Extendicare experience. International Wound Jorunal. 2008;5(2):351-60.

Prindeze NJ, Moffatt LT, Shupp JW. Mechanisms of action for light therapy: a review of molecular interactions. Experimental Biology and Medicine (Maywood). 2012;237:1241-8.

Moore KC, Calderhead RG. The clinical application of low incident power density 830 nm GaAlAs diode laser radiation in the therapy of chronic intractable pain: a historical and optoelectronic rationale and clinical review. International Journal of Optoelectronics.1991;6(5):503-20.

Marolt M, Kos N, Sedej B. Uporaba nizkoenergijskega laserja v fizikalni medicini in rehabilitaciji - naše izkušnje. In: Frangež I, Ban Frangež H (eds). Svetlobna terapija v medicini – fotobiomodulacija. 1. simpozij združenja za fotomedicino in fotobiologijo, 2012, oktober 20, Ljubljana, Slovenija. Ljubljana: Slovensko združenje za fotomedicino in fotobiologijo. 2015: 75-8.

Da Silva JP, da Silva MA, Almeida, AP, Lombardi Junior I, Matos AP. Laser therapy in the tissue repair process: a literature review. Photomedicine and Laser Surgery. 2010;28(1):17-21.

Veliu S, Kröpfl J, Vrbnjak D.Obravnava bolnikov s kroničnimi ranami v Splošni bolnišnici dr. Jožeta Potrča Ptuj. In: Frangež I, Nikolič J (eds). Kirurški in/ali konzercativni pristop k zdravljenju kronične rane?, 13. simpozij o ranah z mednarodno udeležbo, 19. do 20. april 2018 Portorož, Slovenija. Ljubljana: Klinični oddelek za kirurške okužbe, Kirurška klinika, Univerzitetni klinični center. 2018: 126-31.

Serena TE. Use of epidermal grafts in wounds: a review of an automated epidermal harvesting system. Journal of Wound Care. 2015;24(4 Suppl):30-4.

Biswas A, Bharara M, Hurst C, Armstrong DG, Rilo H. The micrograft concept for wound healing: strategies and applications. Journal of Diabetes Science and Technology. 2010;4(4):808-19.

Osborne SN, Schmidt MA, Harper JR. An automated and minimally invasive tool for generating autologous viable epidermal micrografts. Advances in Skin & Wound Care. 2016;29(2):57-64.

Yamaguchi Y, Itami S, Tarutani M, Hosokawa K, Miura H, Yoshikawa K. Regulation of keratin 9 in nonpalmoplantar keratinocytes by palmoplantar fibroblasts through epithelial-mesenchymal interactions. Journal of Investigative Dermatology1999;112(4):483-8.

Kim PD, Fleck T, Heffelfinger R, Blackwell KE. Avoiding secondary skin graft donor site morbidity in the fibula free flap harvest. Archives of Otolaryngology--Head & Neck Surgery. 2008;134(12):1324-7.

Shindo M, Fong BP, Funk GF, Karnell LH. The fibula osteocutaneous flap in head and neck reconstruction: a critical evaluation of donor site morbidity. Archives of Otolaryngology--Head & Neck Surgery. 2000;126(12):1467-72.

Chuenkongkaew T. Modification of split-thickness skin graft: cosmetic donor site and better recipient site. Annals of Plastic Surgery. 2003;50(2):212-4.

Edwards J. Management of skin grafts and donor sites. Nursing Times. 2007;103(43):52-3.

Simizu R, Kishi K, Okabe K, Uchikawa Y, Sakamoto Y, Hattori N, et al. Recruited minced skin grafting for improving the skin appearance of the donor site of a split-thickness skin graft. Dermatologic Surgery. 2012;38(4):654-60.

Malskat WS, Poluektova AA, van der Geld CW, Neumann HM, Weiss RA, Bruijninckx CM, van Gemert, MJ. Endovenous laser ablation (EVLA): a review of mechanisms, modeling outcomes, and issues for debate. Lasers in Medical Science. 2014;29(2):393-403.

van den Bos R, Arends L, Kockaert M, Neumann M, Nijsten T. Endovenous therapies of lower extremity varicosities: a meta-analysis. Journal of Vascular Surgery. 2009;49:230-39.

Vuylsteke ME, Mordon SR Endovenous laser ablation: a review of mechanisms of action. Annals of Vascular Surgery. 2012;26(3): 424-33.

van Gemert MJ, van der Geld CW, Bruijninckx CM, Verdaasdonk R M, Neumann H. M. Comment to Vuylsteke ME and Mordon SR. Endovenous laser ablation: a review of mechanisms of action. Annals of Vascular Surgery. 2012;26:424-33. Annals of Vascular Surgery. 2012;26(6):881-3.

Navarro L, Navarro N, Salat CB, Gomez JF, Min RJ. U.S. Patent No. 6,398,777. Washington, DC: U.S. 2002. Patent and Trademark Office.

Mordon SR, Wassmer B, Zemmouri J. Mathematical modeling of 980-nm and 1320-nm endovenous laser treatment. Lasers and Surgery and Medicine. 2007;39:256-65.

Mordon, S. R., Wassmer, B., & Zemmouri, J. Mathematical modeling of endovenous laser treatment (ELT). BioMedical Engineering OnLine. 2006;5(1):26.

van Ruijven PW, Poluektova AA, van Gemert MJ, Neumann HM, Nijsten, T, van der Geld CW. Optical-thermal mathematical model for endovenous laser ablation of varicose veins. Lasers in Medical Science.2014;29(2): 431-9.

Fan CM, Anderson RR. Endovenous laser ablation: mechanism of action. Phlebology. 2008;23:206-13.

van den Bos RR, Kockaert MA, Neumann HM, Bremmer RH, Nijsten T, van Gemert M J. Heat conduction from the exceedingly hot fiber tip contributes to the endovenous laser ablation of varicose veins. Lasers in Medical Science,.2009;24(2):247251.

Proebstle TM, Lehr HA, Kargl A, Espinola-Klein C, Rother W, Bethge S, et al. Endovenous treatment of the greater saphenous vein with a 940-nm diode laser: thrombotic occlusion after endoluminal thermal damage by laser-generated steam bubbles. Journal of Vascular Surgery. 2002;35:729-36.

van der Geld CWM, van den Bos RR, van Ruijven PWM, Nijsten T, Neumann HAM, van Gemert MJC. The heat-pipe resembling action of boiling bubbles in endovenous laser ablation. Lasers in Medical Science. 2010;25:907-9.

Van Den Bos RR, Neumann M, de Roos KP, Nijsten T. Endovenous laser ablation–induced complications: review of the literature and new cases. Dermatologic Surgery. 2009;35(8):1206-14.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.